
www.manaraa.com

University of South Florida
Scholar Commons

Graduate Theses and Dissertations Graduate School

January 2013

Automatic Identification of Points of Interest in
Global Navigation Satellite System Data: A Spatial
Temporal Approach
Khoa Anh Tran
University of South Florida, ktran9.lbs@gmail.com

Follow this and additional works at: http://scholarcommons.usf.edu/etd

Part of the Computer Sciences Commons, and the Urban Studies and Planning Commons

This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate
Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.

Scholar Commons Citation
Tran, Khoa Anh, "Automatic Identification of Points of Interest in Global Navigation Satellite System Data: A Spatial Temporal
Approach" (2013). Graduate Theses and Dissertations.
http://scholarcommons.usf.edu/etd/4595

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F4595&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F4595&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F4595&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F4595&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F4595&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F4595&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarcommons.usf.edu%2Fetd%2F4595&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/436?utm_source=scholarcommons.usf.edu%2Fetd%2F4595&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu

www.manaraa.com

Automatic Identification of Points of Interest in Global Navigation Satellite System Data:

A Spatial Temporal Approach

by

Khoa A. Tran

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Computer Science
Department of Computer Science and Engineering

College of Engineering
University of South Florida

Co-Major Professor: Miguel A. Labrador, Ph.D.
Co-Major Professor: Sean J. Barbeau, Ph.D.

Rafael Perez, Ph.D.
Yu Sun, Ph.D.

Date of Approval:
March 5, 2013

Keywords: POI, Clustering, Mobile, GPS, Tracking

Copyright c© 2013, Khoa A. Tran

www.manaraa.com

DEDICATION

This thesis is dedicated to my family, especially my Mom and Dad for their love, endless

support, and encouragement.

www.manaraa.com

ACKNOWLEDGMENTS

I would like to thank my two major professors, Dr. Miguel Labrador and Dr. Sean Barbeau,

for their invaluable guidance, support, and patience throughout the course of this thesis. I am really

thankful to them for giving me the great opportunity to work on this project. I would also like to

acknowledge the feedback from my committee members, including Dr. Rafael Perez and Dr. Yu

Sun, who provided important input to help shape and revise this thesis.

I would like to thank Edward Hillsman, my mentor in the Center for Urban Transportation

Research (CUTR), for his guidance and supervision. Thank you to the CUTR crew for their help as

I developed my career.

Last but not least, I would like to thank my family and friends for their love, constant motivation,

and moral support. Without you, this thesis would have never been completed.

www.manaraa.com

TABLE OF CONTENTS

LIST OF TABLES iii

LIST OF FIGURES iv

ABSTRACT v

CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Problem Statement 3
1.3 Contributions 5
1.4 Structure of Thesis 6

CHAPTER 2 BACKGROUND AND LITERATURE REVIEW 7
2.1 Background 7

2.1.1 GPS Auto-Sleep 8
2.1.2 Critical Points Algorithm 10

2.2 Related Works 11
2.2.1 Density-Based Spatial Clustering of Applications with

Noise and Its Spatial Temporal Variation 12
2.2.2 Clustering-Based Stops and Moves of Trajectories 14
2.2.3 Stay Point Detection 16
2.2.4 Fast Clustering of Global Navigation Satellite System Data 16

CHAPTER 3 ASTIPI - THE AUTOMATIC SPATIAL TEMPORAL IDEN-
TIFICATION OF POINTS OF INTEREST ALGORITHM 18

3.1 Definitions 18
3.1.1 Trajectory Sample 18
3.1.2 Eps-K-Neighborhood of a Point 18
3.1.3 Core Point 19
3.1.4 Directly Density-Reachable 20
3.1.5 Density-Reachable 20
3.1.6 Density-Connected 20
3.1.7 Point of Interest 20

3.2 Algorithm 22
3.2.1 Eps-K-Neighborhood 22
3.2.2 ASTIPI 25
3.2.3 Sample Execution 26

i

www.manaraa.com

CHAPTER 4 EVALUATION 31
4.1 Experimental Design 31
4.2 Performance on Dataset with GPS Auto-Sleep Module 32
4.3 Performance on Dataset with GPS Auto-Sleep Module and Criti-

cal Points Algorithm 34
4.4 Running Time 38

CHAPTER 5 SUMMARY 41
5.1 Summary of Contributions 42
5.2 Future Work 42

REFERENCES 44

APPENDICES 49
Appendix A Additional Tables 50
Appendix B Reprint Permissions for Use of Figure 2.2 and Figure 2.3 54

ii

www.manaraa.com

LIST OF TABLES

Table 2.1 Algorithms Comparison 12

Table 4.1 Values of Parameters of Each Algorithm Used in All Experiments 32

Table 4.2 Summary of Algorithm Accuracy of Modes of Transportation
on Full Dataset Using GPS Auto-Sleep Module 34

Table 4.3 Summary of Algorithm Accuracy of Modes of Transporta-
tion on Reduced Datasets Using GPS Auto-Sleep Module and
Critical Points Algorithm 36

Table A.1 Results of Algorithm Evaluation on Full Datasets with GPS
Auto-Sleep Module 50

Table A.2 Results of Algorithm Evaluation on Reduced Datasets with
GPS Auto-Sleep Module and Critical Points Algorithm 51

Table A.3 Results of ASTIPI-With-Speed Algorithm Evaluation 52

Table A.4 Results of Algorithm Average Running Time for Twenty Runs
of each Test 53

iii

www.manaraa.com

LIST OF FIGURES

Figure 2.1 Overview of a Tracking Application System 8

Figure 2.2 GPS Auto-Sleep Uses a State Machine with Various Logic
Evaluations That Control the Transition Between States, Which
Represent Changes to the GPS Sampling Interval Values 9

Figure 2.3 Azimuth Calculations are Used in the Critical Points Algo-
rithm to Determine Change in Direction 11

Figure 2.4 An Example of DBSCAN Algorithm 13

Figure 2.5 An Example of the Returning Trips Problem in CB-SMoT 15

Figure 3.1 An Example of Points of Interest Given a Trajectory Sample 21

Figure 3.2 A Flow Diagram of the Eps-K-Neighborhood Search Function 24

Figure 3.3 A Flow Diagram of the ASTIPI Algorithm 29

Figure 3.4 Sample Execution of a Given Trajectory Sample of Fifteen
Points that Results in Two POIs 30

Figure 4.1 Evaluation of ASTIPI, CB-SMoT, SPD, FC on Full Datasets
using GPS Auto-Sleep Module 33

Figure 4.2 Evaluation of ASTIPI, CB-SMoT, SPD, FC on Reduced Datasets
Using GPS Auto-Sleep Module and Critical Points Algorithm 35

Figure 4.3 Evaluation of ASTIPI-With-Speed, CB-SMoT, SPD, FC on
Full Datasets Using GPS Auto-Sleep Module 37

Figure 4.4 Evaluation of ASTIPI-With-Speed, CB-SMoT, SPD, FC on
Reduced Datasets Using GPS Auto-Sleep Module and Criti-
cal Points Algorithm 38

Figure 4.5 Running Time Evaluation of ASTIPI, CB-SMoT, SPD, FC on
Full Datasets Using GPS Auto-Sleep Module 39

iv

www.manaraa.com

ABSTRACT

In addition to the emergence of smartphones and tablets in recent years, the rise of Global Nav-

igation Satellite Systems (GNSS) has allowed mobile tracking applications to become popular and

be put into many uses. Analyzing tracking records to identify points of interest (POIs) is useful for

both prediction applications and research such as human behavior analysis, transportation planning,

and especially travel surveys. Past research in travel surveys has shown that a GPS mobile phone-

based survey is a useful tool for collecting information about individuals. Moreover, a passive travel

survey collection is preferred to an active travel survey method by the respondents and the analysts

because it is proven to be less error prone. However, passive collection remains a challenge due to

a lack of high accuracy algorithms to automatically identify trip starts and trip ends. While travel

surveys need a POI identification algorithm to carry out passive information collection, mobile

tracking applications must be careful not to affect the user’s battery life, which limits the number

of GPS coordinates that can be recorded and therefore affects the accuracies of existing POI iden-

tification algorithms. This thesis presents Automatic Spatial Temporal Identification of Points of

Interest (ASTIPI), an unsupervised spatial temporal algorithm to identify POIs. ASTIPI utilizes the

temporal and spatial properties of the dataset to obtain a high accuracy of POI identification, even

on a reduced GPS dataset that uses techniques to conserve battery life on mobile devices. While

reducing outliers within POIs, ASTIPI also has a linear running time and maintains the temporal

orders of the location data so that arrival and departure information can be easily extracted and thus,

users’ trips can be quickly identified. Using data from real mobile devices, evaluations of ASTIPI

and other existing algorithms are performed, showing that ASTIPI obtains the highest accuracy of

POI identification with an average accuracy of 88% when performing on full datasets generated

using the GPS Auto-Sleep module and an average accuracy of 59% when performing on reduced

datasets generated using both the GPS Auto-Sleep module and the Critical Points algorithm.

v

www.manaraa.com

CHAPTER 1

INTRODUCTION

1.1 Motivation

Since the first telephone call from Alexander Graham Bell to his assistant Thomas Watson in

1876 [1], humanity has witnessed the invention of the first mobile phone in 1946 [2] and the birth

of Simon, the first smartphone in 1993 [3]. Phones, specifically mobile phones and smartphones,

are becoming smaller and cheaper every day, allowing more people to have access to these devices.

According to the International Telecommunication Union, in 2011, 87% of the world’s population

were mobile subscribers [4].

Modern phones not only allow people to communicate over long distances but also have the

power of computing. With computing capabilities, phones have become one of the most ubiquitous

computing devices that enable humans to collect and process more data. Millions of applications

for phones, usually referred to as “apps”, are available for use. As of November 2011, 50% of adult

mobile phone owners in the United States have apps on their phones [5]. “Apps” can not only be

used in phones, but also in tablets.

One of the key benefits that mobile applications have over desktop and web applications is

that mobile phone users usually carry their devices with them all day, while the phones remain on

the entire time. With the help of embedded GPS receivers in modern phones, mobile applications

can easily collect users’ locations and accurately locate users’ positions at any given point in time.

Location-based services have become a reality. As the number of mobile phone users and apps

grows quickly, the number of location-based applications and devices also follows this increasing

trend. Recent research from PEW Research Center has found that 74% of smartphone owners use

their phones to get location-based information [6]. In addition, Research and Markets [7] projected

1

www.manaraa.com

that shipment of Global Positioning System (GPS) and Location Based Service (LBS) devices will

reach approximately 1,015 million units by 2015.

These numbers are fascinating because they not only show that ubiquitous computing devices

are available to more people, but also show that location-based applications are of great interest

to the public. Unlike other applications, the knowledge of where and when users run a location

based application can be employed to improve the system or create other services. Inrix [8] is a

typical example of a location based service application in which users’ GPS locations are captured

and provide users with real-time traffic information. Another popular use of location-based service

is device tracking, as it is easier now than ever before. Mobile phone users now only have to

install a tracking application to their phone and the application will run quietly in the background

while regularly sending GPS locations to a remote server via cell phone networks. One apparent

use of a tracking application is to locate the user in real time. However, an analyst can also pick

out the users’ visited places throughout a period of time to identify the users’ preferences, such as

going to the mall on weekends, groceries on Thursdays, etc. Additionally, identifying POIs helps

applications to know the users’ preferred locations from a tracking history so that applications can

suggest users similar places they might find interesting. Above all, extracting POIs that users visited

from a tracking dataset can be useful in many other fields, especially in travel surveys for analysis

in transportation flows, travel demands, planning, etc.

Traditionally, a travel survey has been conducted by either paper-and-pencil interview (PAPI)

method or computer-assisted telephone interview (CATI) method. While PAPI takes a lot of re-

sources for distributing, collecting, and inputting data, CATI is problematic because, similar to

PAPI, CATI is a “recall” technique that requires the respondents to remember many of their activi-

ties throughout a day with accurate time periods and situations [9]. Because of this problem, Miller

stated in 2005 that there was a lack of accurate data for travel surveys [10].

With the advancements in technology, many travel surveys utilize GPS, where respondents’

location and time are automatically recorded, and thus improving the spatial and temporal data

of the survey [11] [12] [13] [14] [15]. The techniques these surveys have employed were either

active GPS surveys, in which users were required to input data in electronic travel diaries prior

2

www.manaraa.com

to the start of a trip, or passive in-vehicle GPS systems, in which GPS devices are turned on and

off automatically when the car engines start or stop. Murakami et al. used the active GPS survey

method for travel surveys, asking participants to record trip information before each trip [16]. This

active GPS method is troublesome because respondents might forget to enter trip information as

they travel during the day. In fact, a similar survey method was performed in [17] and the feedback

of most participants was that they remembered to carry the devices with them but forgot to start

recording trips. Meanwhile, many researchers have shown that it is possible to identify trip start/end

locations, as well as start/end times by post-processing the collected in-vehicle GPS dataset [18]

[19]. Although these in-vehicle surveys only focus on a small set of travel surveys, it is proven

that identifying POIs from the GPS tracking dataset can re-construct trips without asking users to

manually start and stop trip collection as participants travel.

With the rise of mobile phone subscribers, person-based GPS tracking allows travel surveys

to be executed on trips with different modes, such as walking, biking, taking bus, etc [20] [21].

Moreover, [22] showed that compared to conventional methods, mobile phone-based travel surveys

considerably reduced data handling time for surveyors and improved data quality. In [23] and [24],

Asakura et al. performed a tracking survey for individual travel behavior using mobile devices. The

author post-processed the collected GPS coordinates with a basic “move or stay” rule and stated

that the system could be put into practice, but further improvements were required. Therefore, in

addition to providing more helpful services to mobile users, an automatic identification of POIs

from a GPS dataset collected via mobile devices is also vital for conducting travel surveys with less

time consumption, less financial constraints, and less burden for participants.

1.2 Problem Statement

Technological advancements continue to increase and allow humans to witness the bloom of

location-based service applications, as more user data, especially tracking data, can be collected

and put to use. For further data mining purposes, the need for extracting locations that users have

visited becomes significant. However, identifying user visited locations by looking at their GPS

3

www.manaraa.com

coordinates throughout a day is not trivial. There are five main characteristics of the collected GPS

dataset.

(1) Property #1: Spatial temporal data. Each collected coordinate is also accompanied with a

time when the mobile device records the GPS fix.

(2) Property #2: Switching between stop and movement. This is the nature of a human travel

behavior. Users cannot be at two different stops without movement in-between. Based on

this property, trip re-construction can be accomplished after successfully identifying POIs.

(3) Property #3: Noise (i.e. outliers) and the loss of data. Due to limitations of current GPS

receiver technology, mobile devices are often unable to record GPS fixes or else they record

inaccurate coordinates, without a clear view of the sky (e.g. indoors, tree cover, mountains).

(4) Property #4: Full dataset and reduced dataset. In order for a tracking application to be

used in real life, mobile devices must dynamically sample and send less GPS fixes over the

network, making the POIs identification more problematic.

(5) Property #5: Duplicated trips. Because the tracking application records users’ travel through-

out an entire day, users often travel back and forth from one place to another using the same

routes.

Among the above properties of the collected GPS dataset, Property #3 is a well-known problem

due to satellite visibility, signal blockage, and multipath signal reflection [25] [26] [27]. Thus,

identifying POIs is a challenging problem. Additionally, while Mayo [28] and Balasubramanian

[29] emphasize the limited energy resources on mobile devices, Aguilar [30] specifically notices

that energy consumption on mobile devices is a significant concern for tracking applications because

GPS fixes need to be obtained and sent via cellular networks. Using mobile devices to receive and

send frequent GPS fixes for an entire day is difficult due to the high cost of energy for GPS receivers

to obtain fixes and for network communication. Various methods of collecting and sending GPS

coordinates have been implemented to overcome these limitations [31] [32] [33]. The solutions

these methods propose are often adjusting the sampling and sending rate of GPS fixes, and thus,

4

www.manaraa.com

reducing the number of location data sent to the server (Property #4). Since these sampling and

sending rates directly contribute to the knowledge of users’ location, these rates are significant

factors that considerably affect the outcome of any POI identification algorithms, making POIs

identification from a reduced dataset even more difficult.

Based on GPS fixes that describe users’ past travel behaviors, a few algorithms have been es-

tablished to identify users’ points of interest. Not only are the accuracy and evaluation of these

algorithms often overlooked, but these algorithms also did not address GPS outliers, the loss of

GPS data, and the dynamic sampling and sending rates of coordinates. Limitations of existing

algorithms include:

(1) Problem #1: Lack of POI identification algorithms that have a high accuracy.

(2) Problem #2: Lack of POI identification algorithms that have a sufficiently high accuracy on

a reduced GPS dataset to take into consideration the dynamic sampling and sending rates

of GPS fixes, solving the limited energy resource problem on mobile devices.

(3) Problem #3: Slow running time of O(n2) in worst case scenarios.

(4) Problem #4: Unable to maintain a temporal order of GPS fixes to support fast trip segmen-

tation (i.e., quickly identifying the GPS coordinates for the trip that connects two POIs)

As a result, there is a demand for a new and efficient algorithm that intelligently identifies users’

POIs from a set of geographical coordinates, collected via mobile devices with assisted GPS (A-

GPS). This new algorithm needs to have a high accuracy on a full GPS dataset, as well as maintain a

sufficiently high accuracy on a reduced dataset that uses different methods of collecting and sending

GPS coordinates in order to save battery life on mobile device.

1.3 Contributions

This thesis presents a novel algorithm, Automatic Spatial Temporal Identification of Points of

Interest (ASTIPI), that identifies users’ POIs given Global Navigation Satellite System data, col-

lected from the users’ mobile devices. Unlike past POI identification algorithms, ASTIPI achieves

5

www.manaraa.com

a high accuracy in identifying POIs (Problem #1) and maintains a sufficiently high accuracy on

reduced datasets that implement methods of calculating and sending GPS coordinates in order to

conserve battery life on mobile devices (Problem #2). In addition, the new algorithm keeps a tem-

poral order of GPS coordinates for fast trip segmentation (Problem #4) and performs efficiently with

a linear growth function as the number of GPS data points being analyzed increases (Problem #3).

Last but not least, using real GPS dataset collected from mobile users, the algorithm is evaluated and

compared with existing POIs identification algorithms on both full datasets and reduced datasets.

1.4 Structure of Thesis

The remainder of this thesis is organized as follows: Chapter 2 provides a detailed review of

known POI identification algorithms in literature. Chapter 3 defines POIs and presents the algo-

rithm to identify POIs from the given geographical GPS coordinates collected from mobile devices.

Chapter 4 presents an evaluation of the ASTIPI algorithm and compares this new algorithm with

existing literature. Chapter 5 concludes the thesis with a summary of the contributions and future

research.

6

www.manaraa.com

CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1 Background

A Global Positioning System (GPS) is a space-based satellite navigation system that provides

users with positioning, navigation, and timing services and is owned and operated by the United

States. In recent years, other global navigation satellite systems (GNSS) have been either launched

or under-developed, such as the Russian GLONASS system, the European Union Galileo satellite

navigation system, the Chinese Beidou satellite navigation system, and the Indian satellite naviga-

tion system. The importance of independently-owned and operated GNSS has been increasingly

recognized by many countries over the last decade because many civilian and military applications

have been heavily dependent on GNSS. Among the applications that rely on GNSS, tracking appli-

cations are one of the most popular, since they can be used for many purposes such as recording

commuters’ trips, monitoring convicted felons, monitoring commercial driver, tracking animal mi-

gration, etc. Figure 2.1 shows an overview of a typical tracking application system.

Developed by the Center for Urban Transportation Research at the University of South Florida,

TRAC-IT is a software architecture that collects travel behavior data for all modes of transportation,

such as walking, biking, car, public transportation, etc. [34] In addition, it also provides real-

time location-based services for GPS-enabled mobile devices. TRAC-IT uses the Location-Aware

Information System Client (LAISYC) framework to efficiently manage and communicate real-time

location information [35]. Typically, the TRAC-IT application on mobile devices records GPS fixes

and sends them to the TRAC-IT server via a cellular provider network. To account for the limitation

of battery life during the day, TRAC-IT tries to collect GPS fixes as infrequently as possible without

losing any important travel behavior data. In order to accomplish that goal, the TRAC-IT mobile

7

www.manaraa.com

Figure 2.1: Overview of a Tracking Application System

application uses the GPS Auto-Sleep algorithm, which collects fixes at a dynamic sampling rate.

In addition, the Critical Point algorithm is also utilized to eliminate non-essential GPS data before

sending GPS fixes to the server.

2.1.1 GPS Auto-Sleep

In order for the device to be portable, the design of a mobile device is relatively small compared

to a desktop or a laptop. Thus, one of the major concerns in mobile devices is its limited energy

resources. A good mobile application needs to take into consideration its use of battery energy. In

a typical tracking application, one of the largest energy consumption sources is the use of GPS to

obtain real-time location information. TRAC-IT attempts to consume less of the battery’s energy

by collecting location data only when it is useful. The GPS Auto-Sleep module in TRAC-IT is

developed to serve this purpose by dynamically adjusting the GPS sampling rate based on user

movement [36].

8

www.manaraa.com

Figure 2.2: GPS Auto-Sleep Uses a State Machine with Various Logic Evaluations That Control the
Transition Between States, Which Represent Changes to the GPS Sampling Interval Values. [36]
Copyright 2008, IEEE

The idea of the GPS Auto-Sleep module is simple, but efficient. When the user is actively

moving, the user’s location data is captured at a high resolution so no significant travel behaviors

are missed. When the user is stationary, the location data is redundant. Moreover, when the user is

stationary, it usually happens indoors. Due to sensor failure, weak signals, and interference indoors,

the mobile devices often cannot obtain a GPS fix or the GPS fix is inaccurate (i.e., noisy). At that

time, the device continuously attempts to calculate a GPS fix every few seconds and thus, a large

amount of energy is wasted. Therefore, location data should not be recorded as frequently if the user

is not moving. GPS Auto-Sleep implements this idea by using a Location Aware State Machine.

The GPS sampling interval is determined by which state it is currently in. Changes between states

in the state machine happen when certain conditions are met or not. Figure 2.2 demonstrates the

design of the location aware state machine.

9

www.manaraa.com

The GPS Auto-Sleep module utilizes speed, time, distance between GPS fixes, and horizontal

accuracy to evaluate conditions for state transition. Lower numbered states indicate that the user

is moving and thus the sampling interval is small (i.e., more frequent). Higher numbered states

indicate that the user slows down and stays at the same location, and thus the mobile device should

go into a “sleep” mode to save battery energy. Once the module detects that the user is moving

again, it can quickly jump to the first state to capture the user’s location data at a high resolution.

More details about the GPS Auto-Sleep module can be found in [37], [36], and [38]. The TRAC-

IT mobile application currently has six states with six different GPS sampling intervals, starting

from state[0] with 4 seconds, state[1] with 8 seconds, state[2] with 16 seconds, state[3] with 64

seconds, state[4] with 150 seconds, and finally state[5] with 256 seconds. These values are used in

the experiments in Chapter 4.

2.1.2 Critical Points Algorithm

While the GPS Auto-Sleep module saves battery energy by intelligently reducing the GPS sam-

pling rate, the Critical Points (CP) algorithm module attempts to save energy by sending only GPS

fixes that contribute to the knowledge of the travel path. By filtering location data before transmit-

ting them to the server, the CP algorithm module effectively increases the time interval between

transmissions, which significantly increases battery life. In addition, sending less data over the

cellular network also helps users’ budget on their data plan.

The CP algorithm filters out GPS fixes by looking at the change in direction of the path [36].

If the traveling path is a straight line (i.e., no change in direction), points along the path do not

contribute to the knowledge of a path. Only the first point and last point in the path are ‘critical’ and

necessary to construct a straight line traveling path. Furthermore, a single GPS fix is ‘critical’ and

enough to represent the location where the user is stationary. To implement the idea of CP, at any

time of the execution, the CP algorithm keeps references to three points: Last Critical Point, Last

Trigger Point, and Current Point. As the name suggests, the Last Critical Point is the last known

point that is considered as critical. The Last Trigger Point is the point under consideration as critical.

The CP algorithm determines on-the-fly whether a GPS fix (i.e., the Last Trigger Point) is critical.

10

www.manaraa.com

Figure 2.3: Azimuth Calculations are Used in the Critical Points Algorithm to Determine Change
in Direction. [36] Copyright 2008, IEEE

When a new location data is retrieved, it will be fed to the algorithm as Current Point. These three

points are then evaluated and if certain conditions are met, the Last Trigger Point is determined as

critical and the references are updated (i.e., the Last Trigger Point is now the Last Critical Point;

the Current Point is now the Last Trigger Point). The time complexity for the CP algorithm is said

to be linear and the algorithm is able to run in real time as new GPS fixes are obtained. Figure 2.3

demonstrates the azimuth calculations to determine change in direction. Further information can be

found in [37] and [39].

2.2 Related Works

At a glance, it may seem that identifying POIs from a set of GPS data would be trivial because

analysts can easily determine POIs by looking at the spatial density of coordinates. However, taking

into consideration GPS outliers, the loss of location data, and different algorithms (e.g., GPS Auto-

Sleep, CP algorithm) for collecting and sending GPS fixes to save battery energy, the answer is

11

www.manaraa.com

not obvious. Spatial clustering alone, without considering time information, creates errors when

identifying POIs. In this section, some of the existing techniques to identify POIs from a collection

of GPS fixes are reviewed. Table 2.1 is an overview of the existing works that are discussed in this

chapter.

Table 2.1: Algorithms Comparison

DBSCAN ST-
DBSCAN CB-SMoT Stay Point

Detection
Fast

Clustering

Overview

Uses
MinPoints
to deter-
mine spatial
density for
clustering

Extension
of DB-
SCAN for
spatial and
temporal
values

Extension of
DBSCAN
that uses
MinTime
instead of
MinPoints

Uses long
distance
and long
duration for
clustering

Uses AVL
tree to main-
tain temporal
order for
easy trip
segmentation

Running Time O(n2) O(n2) O(n2) O(n2) O(n2log(n))

Spatial Temporal No Yes Yes Yes No

Problems
Noise No No No Yes Yes

Returning
Trips Yes Yes Yes No Yes

Loss of
Location

Data
Yes Yes No No No

2.2.1 Density-Based Spatial Clustering of Applications with Noise and Its Spatial Temporal

Variation

In [40], Ester et al. presented Density Based Spatial Clustering of Applications with Noise

(DBSCAN), a well-known spatial clustering algorithm that can identify arbitrary-shaped objects

and detect noise in a dataset. Using the notion of Eps-Neighborhood of a point, DBSCAN decides

whether a point P is a Core Point if the number of Eps-Neighbors is more than MinPoints.

Then, a new cluster is formed by points that are density-reachable or density-connected from P .

In Figure 2.4, if MinPoints is four, then point D is directly density-reachable from point B and

point E is directly density-reachable from point C. Since point D and point E are both density-

reachable from point A, points D and E are said to be density-connected to each other by A. While

all points in Figure 2.4 but N belong to the same cluster, point N does not belong to any clusters

and therefore, it is a Noise.

12

www.manaraa.com

Figure 2.4: An Example of DBSCAN Algorithm

Using the DBSCAN algorithm to identify POIs is not appropriate because MinPoints cannot

be used with GPS datasets that use intelligent techniques such as GPS Auto-Sleep and the CP

algorithm for energy-saving, since noise and loss of location data can occur (i.e., a POI does not

necessarily have a large number of GPS fixes). With different methods of collecting and sending

location data, it is possible to have one or two GPS fixes at a POI. Furthermore, DBSCAN does not

take full advantage of the spatial temporal characteristics of the dataset, resulting in the algorithm’s

low accuracy (Problem #1).

Introduced by Birant et al., the ST-DBSCAN algorithm [41] is an extension of DBSCAN that

clusters spatial temporal data. Unlike the original DBSCAN which only performs clustering on

spatial values, ST-DBSCAN has the ability to discover clusters based on the non-spatial, spatial,

and temporal values of objects. To include other values besides spatial values, the algorithm mod-

ifies the RetrieveNeighbors() function such that neighbors of an object must meet both the spatial

13

www.manaraa.com

condition (i.e., Eps1) and the non-spatial condition (i.e., Eps2). Adding another parameter Eps2

to account for the temporal aspect of the data, ST-DBSCAN still treats them separately in the eval-

uation function. This is a problem in POI identification as it is difficult to find a value for Eps2 for

time. The parameter MinPoints used for determining Core Point remains a problem, while the

running time is not improved from O(n2) for worst case (Problem #3).

2.2.2 Clustering-Based Stops and Moves of Trajectories

Instead of identifying POIs, a slightly different set of problems is computing stops and moves

by testing the intersections of trajectories with a given list of geographical locations. Palma et

al. [42] proposed the Clustering-Based Stops and Moves of Trajectories (CB-SMoT) algorithm to

not only compute stops and moves but also find interesting places that have been left out in the

given list of geographical locations. The CB-SMoT algorithm is a two-step algorithm: first, the

algorithm identifies potential stops, and second, unknown stops are distinguished from the list of

potential stops. Only the first step of the algorithm is considered in this thesis because it focuses on

identifying POIs from a sample trajectory. CB-SMoT modified the DBSCAN algorithm to consider

the temporal aspect of the dataset. Instead of determining core points by the number of neighboring

points, the algorithm utilizes the duration between the first point and the last point in the region to

see if it exceeds MinTime. By extending the DBSCAN algorithm, CB-SMoT is able to detect

outliers and at the same time also considers the loss of location data. In addition, CB-SMoT uses

the quantile function to obtain a relative parameter of Eps distance related to the mean and

the standard deviation of the dataset. The relative parameter allows CB-SMoT to stay away from

defining an absolute Eps value, which is difficult in many cases.

Nonetheless, there are three major drawbacks of the CB-SMoT algorithm. First, the running

time complexity of CB-SMoT remains the same as the running time of the DBSCAN algorithm,

which is O(n2) (Problem #3). Moreover, the quantile function requires a priori knowledge of

the proportion between points inside potential stops and total points in the dataset. This proportion

varies among datasets because users sometimes spend a whole day inside a stop (i.e., the proportion

is one), while on different occasions they might be visiting more than ten stops (i.e., the proportion

14

www.manaraa.com

Figure 2.5: An Example of the Returning Trips Problem in CB-SMoT

is much smaller than one). In addition, the mean and the standard deviation of distance among

coordinates vary when a dynamic GPS sampling rate is involved. Users traveling the same distance

might have different numbers of recorded GPS fixes. Additionally, when searching for neighbors

of a point, the algorithm looks at every point in the input trajectory. Returning trips (e.g. home to

work in the morning and work to home in the afternoon) are an issue (Figure 2.5), as CB-SMoT

will include location data from two different times of the day. With a trajectory that contains the

GPS fixes of users’ travel throughout a day, the returning trips have a significant impact on the

accuracy of the algorithm (Problem #1). Figure 2.5 demonstrates the returning trips problem of the

CB-SMoT algorithm.

In Figure 2.5, user Alice travels from home to work at 8 a.m. When she leaves work in the

afternoon, she decides to go grocery shopping and then go back home at 6 p.m. As Alice has no

15

www.manaraa.com

interest at the incorrectly identified Cluster since she does not even stop at Cluster, Cluster is not

a POI. However, Cluster is constructed because of the close proximity among points and although

CB-SMoT determines density by duration, the time difference between point A and point B is rather

long (i.e., about 10 hours). This is incorrect, since although two points are spatially close to each

other, they happen at different times of the day.

2.2.3 Stay Point Detection

In [43], Li et al. proposed a hierarchical graph-based similarity measurement framework to

model human location history and measure similarity among users. In order to extract a user’s

location information for further data mining and features, Li et al. use the Stay Point Detection

(SPD) algorithm. To detect a stay point, the SPD algorithm looks for a region where the user spends

a period of time exceeding a certain threshold. The idea behind this algorithm is rather simple. If

the distance between two points is far and their duration is short, the user is actively moving. Vice

versa, if the distance is short and their duration is long, the user has just spent time in a stay point.

Therefore, all the points in between belong to the same stay point.

While the SPD algorithm takes into consideration both distance and time, it is not able to detect

GPS outliers. In fact, if loss of data and GPS noise occur consecutively (e.g. indoors), the algorithm

will detect GPS noise as a Stay Point. Once the mobile device is able to obtain a correct coordinate

again, another Stay Point will be detected. This is a double error, preventing the algorithm from

achieving a high accuracy (Problem #1). Another problem with the algorithm happens when all

points in the dataset are at the same stay point. The SPD algorithm will be unable to detect a stay

point because the distance threshold will never be reached. This is also the worst case scenario for

the SPD algorithm with the running time of O(n2) (Problem #3).

2.2.4 Fast Clustering of Global Navigation Satellite System Data

In [44], Persad identified logical POIs from a large amount of raw GPS data using an agglom-

erative hierarchical clustering approach. The Fast Clustering (FC) algorithm represents clusters by

AVL trees to maintain a temporal order among location data so that after the execution of the FC

16

www.manaraa.com

algorithm, trips can easily be constructed by retrieving the maximum and minimum nodes in the

tree. By taking the agglomerative hierarchical clustering approach, the FC algorithm begins with

considering each coordinate as a cluster. Then clusters are combined by an AVL-tree-merge oper-

ation if the distance between any two points in associated clusters are within a certain threshold.

In addition to maintaining the temporal order within a cluster, another benefit of the FC algorithm

is its space-saving property, since the algorithm maintains a O(n) memory storage throughout the

course of the execution (n is the number of GPS fixes).

Nonetheless, there are several drawbacks of this algorithm. First of all, since FC maintains the

temporal order of coordinates within a cluster, it needs to perform an AVL-tree-merge resulting in an

additional log(n) of the running time. Thus, the time complexity of the FC algorithm is O(n2 log n)

(Problem #3). Second, while GPS noise is a known problem of GPS-enabled mobile devices, there

is no noise detection and reduction in the FC algorithm. Third, this algorithm introduces “pseudo-

POIs”, which are small clusters that do not represent meaningful locations to the users (e.g., traffic

light stops). The algorithm cannot differentiate between “pseudo-POIs” and real POIs, and thus

detects many incorrect POIs (Problem #1). Last but not least, although the result of the algorithm

is ordered by time, the temporal property of the GPS fix is not involved in the clustering process,

which does not take full advantage of the spatial temporal properties of the dataset.

17

www.manaraa.com

CHAPTER 3

ASTIPI - THE AUTOMATIC SPATIAL TEMPORAL IDENTIFICATION OF POINTS OF

INTEREST ALGORITHM

This chapter presents ASTIPI, a new algorithm for identifying POIs that has a high accuracy

(Problem #1) and a linear running time (Problem #3) while maintaining a temporal order of GPS

fixes for fast trip segmentation (Problem #4). ASTIPI also takes into account the dynamic sampling

and sending rates of GPS coordinates to address battery limitations in mobile devices (Problem #2).

3.1 Definitions

3.1.1 Trajectory Sample

As previously discussed, mobile devices collect GPS fixes and send them to a server. The list

of those GPS fixes in time order is called a Trajectory Sample. According to Alvares et al. [45], the

definition of a Trajectory Sample is introduced below.

Definition 1. A trajectory sample T is a list of space-time points {p0 = (x0, y0, t0), p1 = (x1, y1, t1),

..., pN = (xN , yN , tN)}, where xi, yi ∈ R, ti ∈ R+ for i = 0, 1, ..., N and t0 < t1 < t2 < ... < tN

The number of GPS fixes in a Trajectory Sample is not limited. A Trajectory Sample may

contain one or two GPS coordinates to thousands of GPS fixes. In the context of this thesis, a

Trajectory Sample is a collection of GPS fixes that a server receives from one mobile device (i.e.,

one user) in a day.

3.1.2 Eps-K-Neighborhood of a Point

Definition 2. The Eps-K-Neighborhood of a point pa, denoted by N(Eps,K)(pa), is the maximal

sub-trajectory {ps1 = (xs1 , ys1 , ts1), ..., psm = (xsm , ysm , tsm)} of a trajectory sample T {p0 =

18

www.manaraa.com

(x0, y0, t0), p1 = (x1, y1, t1), ..., pN = (xN , yN , tN)} such that for any points psi in N(Eps,K)(pa),

dist(pa, psi) ≤ Eps and for any two consecutive points psi , psi+1 in N(Eps,K)(pa), |si−si+1| < K.

To construct the Eps-K-Neighborhood of a point, two parameters Eps and K are needed. While

Eps represents the maximum distance between a point pa and its neighbors, K represents the max-

imum difference in index of two consecutive coordinates in the same neighborhood. The parameter

K serves as a temporal property such that it prevents the algorithm from looking too far ahead in

time and allows returning trips to be seen as different trips. This parameter also helps in reducing

noise from the dataset, as the algorithm will be slow to react to a change in distance. Lastly, the

parameter K is a stopping condition so that ASTIPI does not look for its entire dataset, allowing the

algorithm to run in linear time. Further analysis of the algorithm’s running time will be discussed

in later sections.

3.1.3 Core Point

Definition 3. A point p = (xp, yp, tp) of a trajectory is called Core Point with respect to Eps,

MinTime, and K if

(1) |tsm − tp| ≥MinTime where sm is the last point of N(Eps,K)(p) OR

(2) |tsm − tsm+1 | ≥MinTime where sm is the last point of N(Eps,K)(p) and sm+1 is the first

next point not in N(Eps,K)(p)

Notice that when N(Eps,K)(p) (i.e., the Eps-K-Neighborhood of point p) is empty, tsm defaults

to tp.

Instead of the number of points, defining Core Point by MinTime is essential to avoid data

integrity problems such as noise, absence of coordinates due to limitations in GPS receivers, and

dependency on GPS fix sampling rate. Moreover, as of the end of 2012, mobile devices still have

problems collecting GPS fixes indoors. In some scenarios, mobile devices only record one GPS fix

before coming into a building and record another GPS fix once it gets outside. With the different

strategies for calculating and sending GPS coordinates, tracking applications may put the phone into

idle mode to save battery life and thus, two consecutive GPS fixes are far apart in both distance and

19

www.manaraa.com

time. To further address this problem of indoor GPS receivers and the dynamic sampling and send-

ing rates, the algorithm also considers the duration of the last coordinate in the Eps-K-Neighborhood

and the first next coordinate not in Eps-K-Neighborhood of a point. This means that even if p has

no Eps-K-Neighbors, p can still be a Core Point as long as the difference in time between p and

the next point in the trajectory sample is greater than MinTime.

3.1.4 Directly Density-Reachable

Definition 4. A point q is directly density-reachable to a point p if q ∈ N(Eps,K)(p) and p is a

Core Point with respect to Eps, MinTime, and K.

3.1.5 Density-Reachable

Definition 5. A point q0 is density-reachable from a point p with respect to Eps, MinTime, and

K if there exists a chain q0, q1, q2, ..., qN where qN = p and qk is directly density-reachable to qk+1.

3.1.6 Density-Connected

Definition 6. Two points p and q are density-connected with respect to Eps, MinTime, and K if

there exists a point o, and both p and q are density-reachable from o.

3.1.7 Point of Interest

Definition 7. A point of interest S of a trajectory sample T with respect to Eps, MinTime, and

K is a non-empty subtrajectory of T satisfying the following conditions:

(1) ∀p, q ∈ T : if p ∈ S and q is density-reachable from p with respect to Eps, MinTime, and

K, then q ∈ S.

(2) ∀p, q ∈ S: p is density-connected to q with respect to Eps, MinTime, and K.

(3) ∃p ∈ S: p is a Core Point.

A point of interest (POI) is a collection of GPS fixes ordered by time that describes one common

logical geographic location. In many location-based services and applications (e.g., geocoding),

20

www.manaraa.com

Figure 3.1: An Example of Points of Interest Given a Trajectory Sample

regardless of how large the geographic location is, a location is simplified to one coordinate (i.e.,

one pair of latitude and longitude), which is often referred to as a POI. However, in this algorithm,

for a detailed analysis of the dataset, coordinates are grouped together when these GPS fixes are

significant to the user’s travel behaviors and depict the same logical geographic location. Each

group of coordinates is considered as a POI. The benefit of grouping location data that shares the

same meaning to users is that with a set of GPS fixes indicating the same location, analysts can

always go back and represent the location with one coordinate (e.g., the center coordinate of a POI).

Moreover, from the identified POIs generated by the algorithm, the amount of time users spend at

a place is easily extracted. Trip information is also conveniently constructed by the relationship

among POIs. Figure 3.1 is an illustration of two POIs, denoted by POI1 and POI2.

In Figure 3.1, the duration that the user spent at POI1 can be computed by the difference in

time between C4 and C3. Similarly, the duration spent at POI2 is the time difference between

C11 and C7. A trip from POI1 to POI2 is generated by points between C4 and C7. Notice that

coordinates in POI2 do not have consecutive indexes because C8 is an outlier. Other alternative

names of POI are Stay Point [43], Stop [45], and Place [46].

21

www.manaraa.com

In general, the trajectory sample is the input of the algorithm while the POIs are the output that

the algorithm provides.

3.2 Algorithm

3.2.1 Eps-K-Neighborhood

As discussed in Section 1.2, one of the characteristics of a tracking application dataset is its

spatial temporal property (Property #1). However, while the DBSCAN algorithm clusters objects in

any shapes and eliminates noise in the dataset, it only considers the spatial properties: the distance

among points and the number of points inside a region. Determining density of a region by the

number of points is a problem in the collected GPS dataset because in addition to GPS outliers,

the loss of location data also occurs. Therefore, the ASTIPI algorithm determines density by the

duration that a user spends inside a region. The duration in a region is computed by first finding a

neighborhood and then calculating the time difference between the first coordinate and the last co-

ordinate in that neighborhood. To further address the problem of loss of data, if any two coordinates

are consecutive in time and their time difference is long, regardless of their proximity, ASTIPI de-

termines the former coordinate is dense (i.e., Core Point), even if it has no neighbors. Using time

to identify density has two benefits. First, density is not dependent on the number of points, which

minimizes the problem of loss of GPS fixes and also accounts for various techniques of collecting

and sending GPS fixes for the purpose of saving battery life. Second, the duration value can be

adjusted for purposes of data mining and applications.

Another modification to the DBSCAN algorithm in ASTIPI is the K parameter, mentioned in

Definition 2. The parameter K is used as a stopping condition for the neighborhood search of a

point. K is the limit of the number of consecutive coordinates that are not within a certain distance

threshold. In the original DBSCAN algorithm, in order to find neighbors of a point P , DBSCAN

needs to compute distances between P and all other points in the dataset. Noise detection and

elimination are accomplished because the DBSCAN neighbors search does not stop immediately

once the proximity condition is not met. In order to be considered as noise in DBSCAN, the point

Pnoise needs to be compared with all other points, and once DBSCAN guarantees that Pnoise does

22

www.manaraa.com

not belong to any clusters, Pnoise is identified as noise. Meanwhile, ASTIPI utilizes the fact that the

collection of GPS fixes is spatial temporal and at the same time, is also in time order. Therefore,

ASTIPI only needs to perform the search for the next K coordinates. If those K more GPS fixes

are not within the region of point P , ASTIPI is confident that the user is moving away from P .

A small K value prevents the algorithm from noise detection and elimination. On the other hand,

the larger the K parameter is, the more confidence ASTIPI has that the user is moving away, and

outlier detection and elimination can be achieved. Nonetheless, a large K value results in a longer

running time of the algorithm. In addition to noise detection and elimination, using parameter K for

stopping neighbors search helps to solve the problem of returning trips, mentioned in Section 2.2.2.

The solution to the returning trips problem is to not look too far ahead in time. With a sufficiently

small value of K, the problem is solved because the search process does not look for the entire

dataset but stops after K more processing times.

Like the original DBSCAN, the goal of the Eps-K-Neighborhood function is to find coordinates

in the trajectories that are close to a point P . These GPS fixes need not be too far away in time from

P . In order to meet this goal, ASTIPI utilizes the nature of human travel behaviors: travel time

and travel distance are highly correlated. Given the same amount of time, the distance covered by a

person in motion is farther than that of a person who is stationary. Also, given the same amount of

distance, the time it takes for a person while moving is shorter than that of a person who is staying

in one place. To find the Eps-K-Neighborhood of a coordinate coord, ASTIPI begins the search

at the position startIndex. For each GPS fix currCoord starting at startIndex, the algorithm

sees if currCoord is within reach of coord. If they are close to together, currCoord is a Eps-K-

Neighbor of coord and ASTIPI continues looking at the next GPS fix. If the two coordinates are not

within reach, ASTIPI increases the notInRangeCount by one until this value exceeds a certain

threshold, then ASTIPI stops the search and sees if coord has met the criteria to be a Core Point.

The Eps-K-Neighborhood function returns the list of coordinates, ordered by time, and the decision

of the point coord is a Core Point. Figure 3.2 illustrates the flow of the algorithm.

Algorithm 1 is the pseudo-code of the Eps-K-Neighborhood function. In addition to the pool of

coordinates, the Eps parameter, and the K parameter, the Eps-K-Neighborhood function requires

23

www.manaraa.com

Figure 3.2: A Flow Diagram of the Eps-K-Neighborhood Search Function
24

www.manaraa.com

Algorithm 1: Eps-K-Neighborhood(startIndex, coord)
Require: Input: A trajectory sample T of size n, where n ≥ 0
Require: Output: Eps-K-Neighborhood of coord (i.e., N(Eps,K)(coord))

1: coord.setCorePoint(false)
2: notInRangeCount = 0
3: for i = startIndex, i < T.size() do
4: currCoord = T.get(i)
5: if distance(currCoord, coord) < Eps then
6: Add currCoord to neighborhood list N(Eps,K)(coord)
7: notInRangeCount = 0
8: else
9: notInRangeCount = notInRangeCount+ 1

10: if notInRangeCount > K then
11: lastCoordInList = N(Eps,K)(coord).isEmpty ? coord : N(Eps,K)(coord).last
12: if durationLastCoordInListWithF irstCoordOutsideList > MinTime AND

i−K = lastCoordInListIndex+ 1 then
13: coord.setCorePoint(true)
14: end if
15: break
16: end if
17: end if
18: end for
19: lastCoordInList = N(Eps,K)(coord).isEmpty ? coord : N(Eps,K)(coord).last
20: if durationLastCoordInListWithCoord > MinTime then
21: coord.setCorePoint(true)
22: end if
23: return N(Eps,K)(coord)

the starting index from which the search should begin and the current coordinate on which the

neighborhood search is performed. Unlike the neighborhood search in DBSCAN (also referred to

as regionQuery), which searches from the beginning to the end of the dataset, the starting index that

is passed in from the main program helps to significantly reduce the processing time.

3.2.2 ASTIPI

To incorporate the temporal properties of the GPS fixes, ASTIPI re-defines the meaning of a

Core Point and the meaning of neighbors of a point. ASTIPI utilizes the Eps-K-Neighborhood

function to implement the new definitions and address the problems of noise detection and reduc-

tion, loss of location data, and returning trips. Since the search for neighbors does not look for the

25

www.manaraa.com

entire collection but stops after few number of coordinates that are outside a pre-defined range, the

running time of the algorithm can be significantly improved. Modifications to the main DBSCAN

algorithm is necessary in ASTIPI so that the algorithm keeps track of the coordinate indexes, and

thus, only performs necessary calculations. In general, in order to find POIs, ASTIPI needs to

determine if a point P is a Core Point and find coordinates that are density-reachable from P

or density-connected to P with respect to Eps, MinTime, and K. Specifically, given a list of

time-ordered coordinates, the ASTIPI begins at the first coordinate P0 in the trajectory sample. It

first finds the Eps-K-Neighborhood N(Eps,K)(P0) of P0 and determines if P0 is a Core Point. If

P0 is not a Core Point, the algorithm continues with the next GPS fix in the time-ordered tra-

jectory sample. If P0 is a Core Point, ASTIPI will look for the Eps-K-Neighbors of each point

Pi in N(Eps,K)(P0) and check if Pi is a Core Point. If Pi is a Core Point, all coordinates in

Eps-K-Neighbors of Pi are added to N(Eps,K)(P0) and the process continues until the end of the

list N(Eps,K)(P0). While executing the Eps-K-Neighborhood function, the algorithm maintains

the index of the last coordinate in the Eps-K-Neighborhood of the most recent Core Point (i.e.,

currIndex). By keeping track of this index, ASTIPI performs the Eps-K-Neighborhood search

only on the necessary location data. At the end of this process, ASTIPI will have all points that are

either density-reachable from P0 or density-connected to P0. The algorithm continues to look at the

next GPS fix in the trajectory sample based on the currIndex that ASTIPI has been keeping track

of. Figure 3.3 demonstrates the flow of ASTIPI. The pseudo-code of this algorithm is also provided

in Algorithm 2.

3.2.3 Sample Execution

Figure 3.4 depicts a sample trajectory of a user’s travel of fifteen different location data starting

from C1 to C15. Suppose MinTime is 300 seconds, Eps is 100 meters and K is three. ASTIPI

first searches for the Eps-K-Neighborhood of C1 by computing the distance from C1 to C2, C3, and

C4. Because all distances are less than 100 meters, these three points are added to the neighborhood

of C1. The Eps-K-Neighborhood function continues to calculate the distance from C1 to C5, C6,

and C7. Since the distances to these three coordinates are not within 100 meters from C1 and the

26

www.manaraa.com

Algorithm 2: ASTIPI(T)
Require: Input: A trajectory sample T of size n, where n ≥ 0
Require: Output: A list of POIs ordered by time

1: currIndex = 0
2: while currIndex < T.size() do
3: currCoord = T.get(currIndex)
4: EKN = Eps-K-Neighborhood(currIndex + 1, currCoord)
5: if currCoord is CorePoint then
6: Add currCoord and all its neighbors to the new point of interest poi
7: currIndex = index of last coordinate in EKN
8: i = 0
9: while i < EKN.size() do

10: CoordEKN = EKN.get(i)
11: EKNsub = Eps-K-Neighborhood(currIndex + 1, CoordEKN)
12: if CoordEKN is CorePoint then
13: currIndex = index of last coordinate in EKNsub

14: Add all coordinates in EKNsub to EKN
15: Add all coordinates in EKNsub to poi
16: end if
17: i = i+ 1
18: end while
19: end if
20: currIndex = currIndex+ 1
21: Add poi to pointsOfInterest
22: end while
23: return pointsOfInterest

number of coordinates outside 100 meters has reached three, the Eps-K-Neighborhood function

stops and returns N(100,3)(P1). In addition, since the time difference between C4 and C1 is 500

seconds, the algorithm sets C1 to a Core Point. After discovering that C2, C3, and C4 are the Eps-

K-Neighbors of C1 and C1 is a Core Point, ASTIPI executes the Eps-K-Neighborhood function

on C2 by computing the distances from C2 to C5, C6, and C7. Because these three GPS fixes are

more than 100 meters from C2, ASTIPI stops the search. Next, the algorithm performs an Eps-K-

Neighborhood search on C3 and sees that C5 is not close to C3 but C6, C7, and C8 are within 100

meters of C3. Thus, C6, C7, and C8 are added to the neighborhood of C3. The Eps-K-Neighborhood

search on C3 stops after computing the distance from C3 to C11. Since ASTIPI discovers that C3 is

a Core Point, C6, C7, and C8 are added to N(100,3)(P1). The algorithm continues by executing the

27

www.manaraa.com

Eps-K-Neighborhood function on C4, C6, C7, and C8 with a starting search index of nine. Since

none of these coordinates is a Core Point, no more GPS fixes are added to N(100,3)(P1). Then,

N(100,3)(P1) is a new POI.

ASTIPI continues with C9 and C10 and determines that these two points are not Core Points.

Although the Eps-K-Neighborhood function of C11 returns no neighbors, the algorithm determines

that C11 is a Core Point because the time difference between C11 and C12 is 680 seconds. Thus,

a new POI is constructed with only one coordinate C11 in that POI. The ASTIPI algorithm ends

at C15. Notice that although C15 is within 100 meters of C1, C15 is not a Eps-K-Neighbor of C1

because the Eps-K-Neighborhood search for C1 ends after computing the distance to C7. This is the

intended behavior of ASTIPI, as C15 is not close in time with C1 although the two points are close

in distance. At the end of the execution, two POIs are correctly identified.

28

www.manaraa.com

Figure 3.3: A Flow Diagram of the ASTIPI Algorithm

29

www.manaraa.com

Figure 3.4: Sample Execution of a Given Trajectory Sample of Fifteen Points that Results in Two
POIs

30

www.manaraa.com

CHAPTER 4

EVALUATION

As indicated in Chapter 2, CB-SMoT and SPD use the spatial temporal property of the dataset

(Property #1) to identify POIs. Furthermore, FC is also an algorithm specifically designed for

automatic identification of POIs. Therefore, this section compares the ASTIPI algorithm with the

CB-SMoT, SPD, and FC algorithms by evaluating their accuracies on datasets using the GPS Auto-

Sleep module (full datasets) and on datasets using a combination of the GPS Auto-Sleep module

and the CP algorithm (reduced datasets). This section also compares the running time of ASTIPI

against other algorithms’ running times.

4.1 Experimental Design

To evaluate the three algorithms, each algorithm is run using a set of previously recorded GPS

coordinates. All 27 datasets are collected by TRAC-IT, the mobile application mentioned in Section

2.1, running on a Sanyo Pro 200 with A-GPS. While walking, driving, and riding bus, a user carries

the phone throughout a day, reporting the places he visited at the end of each day. These data are

recorded and considered as the ground truth data for evaluation. Experiments are performed on the

dataset with the GPS Auto-Sleep module, and with a combination of the GPS Auto-Sleep module

and the Critical Points (CP) algorithm for conserving battery life on mobile devices. These two

datasets are essentially the same, with the only difference that the second one has a significantly

fewer number of GPS fixes due to the CP algorithm.

In order to compute the accuracy of the algorithm, definitions of True Positive, False Positive,

and False Negative are presented below.

31

www.manaraa.com

• True Positives (TP): The number of correctly identified POIs that describe users’ visited lo-

cations.

• False Positives (FP): The number of POIs users did not visit, but the algorithm identifies as

POIs.

• False Negatives (FN): The number of POIs users visited, but the algorithm does not identify

as POIs.

Then, the accuracy of each algorithm is computed as follows:

Accuracy =
TP

TP + FP + FN
(4.1)

The values of duration threshold to be considered an activity vary in literature such as 45 seconds

and 120 seconds in [47], 300 seconds in [48], or even 900 seconds in [21]. For this thesis, a duration

threshold of five minutes (i.e., 300 seconds) is selected. Table 4.1 describes the values of algorithm

parameters used in all experiments. These values are the ones that each corresponding algorithm

achieves the highest accuracy when running on all datasets.

Table 4.1: Values of Parameters of Each Algorithm Used in All Experiments

Parameters ASTIPI CB-SMoT SPD FC
MinTime 5 minutes 5 minutes 5 minutes N/A

Eps 100 meters 100 meters 180 meters 40 meters
K 3 N/A N/A N/A

4.2 Performance on Dataset with GPS Auto-Sleep Module

The GPS Auto-Sleep module is a part of the TRAC-IT mobile application that controls the GPS

sampling rate. As previously mentioned in Section 2.1.1 the GPS Auto-Sleep module in TRAC-IT

has six states with six different GPS sampling interval starting from state[0] with 4 seconds, state[1]

with 8 seconds, state[2] with 16 seconds, state[3] with 64 seconds, state[4] with 150 seconds, and

finally, state[5] with 256 seconds.

32

www.manaraa.com

Figure 4.1: Evaluation of ASTIPI, CB-SMoT, SPD, FC on Full Datasets using GPS Auto-Sleep
Module

Figure 4.1 shows that among the four algorithms analyzed using full datasets generated by the

GPS Auto-Sleep module, ASTIPI yields the highest accuracy with an average of 88% of accuracy,

and 23 of the 27 tests (i.e., 85% of all test cases) have an accuracy greater than 75%. ASTIPI

performs well on all test cases but one (i.e. Test #4 in Table A.1) when the user visits places that

are close to each other (e.g. classes on campus within walking distance). This scenario is expected

when using the GPS Auto-Sleep module because while the phone was sleeping, the user moved

between classes. By the time the phone woke up, the user was already indoors and GPS Auto-

Sleep module could not calculate a new GPS coordinate, and thus, the module thinks the user was

stationary and did not attempt to collect GPS fixes that contribute to the knowledge of the user’s

location. On the contrary, while the SPD algorithm yields an average of 65% accuracy, only 26%

of the test cases have an accuracy greater than 75%. This large percentage gap between the average

accuracy and percent of test cases suggests that SPD performs well in certain scenarios, but poorly

on different datasets. In fact, as previously mentioned in Section 2.2.3, SPD cannot detect any POIs

33

www.manaraa.com

Table 4.2: Summary of Algorithm Accuracy of Modes of Transportation on Full Dataset Using GPS
Auto-Sleep Module

Mode of Transportation Number
of Tests

ASTIPI
(%)

CB-SMoT
(%)

SPD
(%)

FC
(%)

Stationary 2 100 100 0 100
Walk 3 69 39 46 37

Walk & Bus 3 67 23 60 22
Walk & Bus & Drive 1 100 13 63 30

Walk & Drive 14 93 22 75 5
Drive 4 94 15 82 3

when the user stays in one place and the 180 meters threshold is never exceeded (e.g. Test #1 and

#2 in Table A.1). Meanwhile, CB-SMoT has the third highest average accuracy and FC has the

lowest average accuracy among the four algorithms. When splitting up the datasets based on the

mode of transportation, ASTIPI remains the algorithm with the highest accuracy on every mode of

transportation. However, while ASTIPI performs well when the user is stationary, when using a

combination of walking, riding bus, and driving, when using a combination of walking and driving,

or when only driving, the algorithm has an average accuracy of lower than 70% for walking, and for

walking and riding bus. Again, this is an expected problem of the GPS Auto-Sleep module when

the user travels a short distance in a short amount of time while the phone is still asleep. The results

of the experiments are provided in Table A.1.

4.3 Performance on Dataset with GPS Auto-Sleep Module and Critical Points Algorithm

Typically, the CP algorithm would be implemented in the TRAC-IT mobile application to fil-

ter the GPS dataset before it reaches the server, therefore saving battery energy used in wireless

transmissions. However, in this thesis the GPS dataset is post-processed using the CP algorithm

so ASTIPI can be analyzed both on the original dataset (Section 4.2) as well as the subset of data

generated by the CP algorithm. According to [37], the following thresholds for the CP algorithm

are used:

• min speed threshold = 0.1 meters per second

• max walk speed = 0.6 meters per second

34

www.manaraa.com

Figure 4.2: Evaluation of ASTIPI, CB-SMoT, SPD, FC on Reduced Datasets Using GPS Auto-Sleep
Module and Critical Points Algorithm

• angle threshold = 4.5 degrees for walk trips and 3 degrees for car trips.

Figure 4.2 shows that among the four algorithms, ASTIPI is still the most accurate algorithm

with an average accuracy of 45%, and 19% of the 27 tests have an accuracy greater than 55%. CB-

SMoT comes in second place with an average accuracy of 35%, and 11% of the test cases have an

accuracy greater than 55%. Similar to the performance on the datasets with only the GPS Auto-

Sleep module on, the gap between the average accuracy and the percentage of test cases having

an accuracy greater than 55% of the SPD algorithm is large because of its inability to discover

POIs when all the location data represents only one place in the entire dataset. Moreover, for each

mode of transportation, ASTIPI remains the most accurate algorithm to identify POIs on reduced

datasets. Nonetheless, unlike its performance on full datasets, ASTIPI’s accuracy on a combination

of walking and driving modes and driving mode only drop significantly compared to other modes

of transportation within the same algorithm.

35

www.manaraa.com

Table 4.3: Summary of Algorithm Accuracy of Modes of Transportation on Reduced Datasets Using
GPS Auto-Sleep Module and Critical Points Algorithm

Mode of Transportation Number
of Tests

ASTIPI
(%)

CB-SMoT
(%)

SPD
(%)

FC
(%)

Stationary 2 75 100 0 100
Walk 3 34 24 31 29

Walk & Bus 3 35 30 32 22
Walk & Bus & Drive 1 71 43 63 31

Walk & Drive 14 47 31 40 27
Drive 4 34 24 36 21

Although ASTIPI yields the highest accuracy among the four algorithms, its average accuracy

is still less than 50%. One reason for the low accuracy is the lack of knowledge about the user’s

location. The CP algorithm reduces the number of GPS coordinates 70% or more; in certain cases,

that number is more than 90%. And the trade-off for sending less number of GPS fixes to conserve

battery life is the loss of knowledge about user’s location. Another reason for the low accuracy is that

ASTIPI is sensitive to determining POIs when the duration between two consecutive coordinates is

more than MinTime (i.e. 5 minutes in the experiments). This sensitivity is appropriate in a high

resolution dataset, as it indicates the user has just gone outside from a building (i.e. because the loss

of GPS signal indoors) or the user starts moving again after the phone has been sleeping for some

time to save battery life. However, with the involvement of the CP algorithm, a GPS fix is recorded

only if there is a significant change in direction and thus, the duration between two consecutive

points exceeding MinTime does not indicate a POI, resulting in a large number of False Positives

in the ASTIPI algorithm. Details of the experiments are described in Table A.2

To improve the performance of ASTIPI on the CP algorithm dataset by reducing the number

of False Positives, besides duration, speed needs to be included when determining a Core Point.

Definition 3 was modified to describe the Core Point With Speed.

Definition 8. A point p = (xp, yp, tp) of a trajectory is called core point with speed with respect to

Eps, MinTime, and K if

(1) |tsm − tp| ≥MinTime where sm is the last point of N(Eps,K)(p) OR

36

www.manaraa.com

Figure 4.3: Evaluation of ASTIPI-With-Speed, CB-SMoT, SPD, FC on Full Datasets Using GPS
Auto-Sleep Module

(2) |tsm − tsm+1 | ≥MinTime where sm is the last point of N(Eps,K)(p) and sm+1 is the first

next point not in N(Eps,K)(p)

(3) The speed at point p is less than MaxSpeed

Notice that if N(Eps,K)(p) (i.e. the Eps-K-Neighborhood of point p) is empty, tsm defaults to

tp.

To reduce False Positives when running CP algorithm, a point p is a Core Point only if p has

a slow speed, indicating the user is not moving. Thus, MaxSpeed parameter is set to 10 meters

per second in the following experiment. The ASTIPI algorithm is modified according to the new

definition of Core Point With Speed. This ASTIPI-With-Speed algorithm is evaluated by using

the same Eps value of 100 meters and a K value of three.

Figure 4.3 and Figure 4.4 illustrates the evaluations of ASTIPI-With-Speed on the full datasets

and reduced datasets compared to CB-SMoT, SPD, and FC algorithms. The performance on the full

datasets with GPS Auto-Sleep slightly decreases from an average accuracy of 88% to an average

37

www.manaraa.com

Figure 4.4: Evaluation of ASTIPI-With-Speed, CB-SMoT, SPD, FC on Reduced Datasets Using
GPS Auto-Sleep Module and Critical Points Algorithm

accuracy of 87%. However, the performance on the reduced datasets combining the two strategies

significantly increases from an average accuracy of 45% to an average accuracy of 59%. Notice that

the accuracy increase is primarily due to the reduction in the number of False Positives. Table A.3

presents the results of the ASTIPI-With-Speed evaluation on both full datasets and reduced datasets.

4.4 Running Time

This section gives a detailed analysis of ASTIPI running time. Suppose n is the size of the

trajectory sample T . The two while-loops in the ASTIPI algorithm ensure that all coordinates but

noise in T , regardless of being a Core Point or not, run the Eps-K-Neighborhood function. Since

ASTIPI uses the Eps-K-Neighborhood search, it is imperative to evaluate the running time of the

Eps-K-Neighborhood function. There is one for-loop in Eps-K-Neighborhood running from a given

starting index to the end of the trajectory. This loop is halted after a constant K times failing to

meet the close proximity condition between two coordinates. Thus, the worst case scenario of this

38

www.manaraa.com

Figure 4.5: Running Time Evaluation of ASTIPI, CB-SMoT, SPD, FC on Full Datasets Using GPS
Auto-Sleep Module

function happens when most coordinates in consideration are within Eps meters, which gives us

O(n). However, when the worst case scenario of Eps-K-Neighborhood occurs, the main ASTIPI al-

gorithm also reaches the end of T , making the running time of ASTIPI a linear running time. Notice

that the number of GPS fixes in the trajectory is proportional to its duration. Therefore, as n goes

to infinity (i.e., the size of T gets larger), the total duration of the trajectory sample also gets longer

while MinTime is relatively small (i.e., hours vs. minutes), making the worst case scenario of

Eps-K-Neighborhood search always returns a Core Point. When Eps-K-Neighborhood function’s

worst case scenario does not occur, the search will stop after a constant number of comparisons and

if the Core Point condition is met, the main ASTIPI algorithm will continue with the coordinate

where the search left off. In total, the number of comparisons that ASTIPI processes is f(n) + C,

showing that ASTIPI runs in linear time.

To evaluate the running time of ASTIPI and the other three algorithms, the processing time of

each algorithm is calculated starting after the trajectory sample is retrieved from the database and

ending after the list of POIs is returned from each algorithm. Each test is run twenty times and the

average of all recorded running times for each test is used as the measured value for the associated

test. Figure 4.5 is the result of this running time evaluation. Out of the four algorithms, SPD has

39

www.manaraa.com

the smallest average running time of 0.37ms while ASTIPI has the second smallest average running

time of 2.72ms and FC, CB-SMoT are in the third and fourth place with 356.38ms and 357.67ms,

respectively. The results demonstrate that the CB-SMoT and FC algorithms are significantly slow

compared to ASTIPI and SPD. Additionally, although SPD is O(n2) in worst case scenario running

time, its average running time shown in Figure 4.5 is a little faster than ASTIPI’s. Notice that the

worst case scenario of SPD happens when the user stays in one place for the entire dataset. For

the collected datasets, this scenario contains only a small number of coordinates because once the

user stays in one place, the GPS Auto-Sleep Module prevents TRAC-IT from sending duplicate

location data, as it does not contribute to the knowledge of user’s location. Therefore, the difference

in running time is not noticeable between SPD and ASTIPI. In other cases, SPD and ASTIPI utilize

the same idea that once a POI is detected, both algorithms process the next coordinate from the

last one in the identified POI. Because ASTIPI takes into account noisy data, it needs to perform

additional computations before continuing to the next coordinate, which explains why ASTIPI is

slightly slower than SPD for average case scenarios. More information about ASTIPI running time

evaluation can be found in Table A.4.

40

www.manaraa.com

CHAPTER 5

SUMMARY

The popularity of mobile devices with embedded GPS has allowed more people to get access to

location aware applications, especially tracking applications. While more data, especially location

data, is being collected, automatic identification of POIs is needed to identify places users have

been, so that other applications can suggest and predict places that users might find interesting. In

addition, travel surveys can utilize the automatic algorithm to reduce time, cost, and participants’

burden to carry out more accurate surveys. Nonetheless, there are still issues with the collected

GPS coordinates via mobile devices including outliers, loss of location data, and duplicated trips

throughout a day. In addition, limited energy resource is a major limitation in mobile devices that

require tracking applications to dynamically calculate and send GPS fixes. All these problems make

it difficult to obtain a high accuracy algorithm for automatic identification of POIs. A new algorithm

is required to address the following existing problems:

(1) Problem #1: Lack of POI identification algorithms that have a high accuracy.

(2) Problem #2: Lack of POI identification algorithms that have a sufficiently high accuracy on

a reduced GPS dataset for addressing the energy consumption problem on mobile devices.

(3) Problem #3: Slow running time of O(n2) in worst case scenarios.

(4) Problem #4: Unable to maintain a temporal order of GPS fixes to support fast trip segmen-

tation.

41

www.manaraa.com

5.1 Summary of Contributions

This thesis presented ASTIPI, a spatial temporal algorithm for automatic identification of POIs

given a set of GPS coordinates collected by mobile devices with A-GPS. The new algorithm was

evaluated and compared with existing works, demonstrating that ASTIPI significantly improves

the accuracy of POI identification to 88% with full datasets that use the GPS Auto-Sleep module

and 59% with reduced datasets that use a combination of the GPS Auto-Sleep module and the CP

algorithm, addressing Problem #1 and Problem #2. Moreover, ASTIPI also addresses Problem

#3 with its linear running time while maintaining a temporal order of GPS coordinates for fast

trip segmentation (Problem #4). Overall, ASTIPI is capable of identifying POIs from users’ GPS

tracking datasets, which can be utilized in many fields, particularly travel surveys, for cost and time

savings.

5.2 Future Work

ASTIPI currently yields a high average accuracy of 88% with the full datasets using the GPS

Auto-Sleep module for battery efficiency. However, ASTIPI only has an average accuracy of 45%

(or 59% for ASTIPI-With-Speed) on the reduced datasets using the combination of the GPS Auto-

Sleep module and the CP algorithm. These accuracies of 45% and 59% are low and cannot be

used in practice. Although part of the reason for the low accuracies is the significant reduction in

location data for some visited places that do not have any GPS fixes, it is useful to improve the

ASTIPI algorithm so that the number of True Positives can be increased. One possible solution

to increase the number of correctly identified POIs is to use GPS from multiple sources of the

same person (e.g. combining car and person-based GPS). This approach allows tracking with high

resolution while addressing the limited energy’s resources of mobile devices. Another approach is

to utilize map data to increase the accuracy of the algorithm.

Furthermore, all tests were performed in the Tampa, Florida area with an Eps parameter of 100

meters and a K value of three. While the MinTime duration varies depending on the type of analy-

sis, Eps and K would be different in other cities and neighborhoods where POIs are closer together

42

www.manaraa.com

and skyscrapers would affect the quality of computed GPS coordinates. Therefore, evaluations of

ASTIPI on datasets performed in those neighborhoods are necessary. Additionally, instead of using

the absolute distance Eps to define proximity between points, ASTIPI can be further improved by

employing a relative parameter related to the dataset.

43

www.manaraa.com

REFERENCES

[1] “Inventing the telephone,” accessed: 11/21/2012. [Online]. Available: http://www.corp.att.
com/history/inventing.html

[2] “1946: First mobile telephone call,” accessed: 11/21/2012. [Online]. Available:
http://www.corp.att.com/attlabs/reputation/timeline/46mobile.html

[3] “Bellsouth, IBM unveil personal communicator phone,” Mobile Phone News, vol. 11,
no. 43, Nov. 1993. [Online]. Available: http://go.galegroup.com/ps/i.do?id=GALE%
7CA14297997&v=2.1&u=tamp44898&it=r&p=ITOF&sw=w

[4] “The World in 2011, ICT facts and figures,” accessed: 11/21/2012. [Online]. Available:
http://www.itu.int/ITU-D/ict/facts/2011/material/ICTFactsFigures2011.pdf

[5] K. Purcell. (2011, Nov.) Half of adult cell phone owners have apps on their phones. [Online].
Available: http://pewinternet.org/∼/media//Files/Reports/2011/PIP Apps-Update-2011.pdf

[6] K. Zickuhr. (2011) Three-quarters of smartphone owners use location-based services.
[Online]. Available: http://pewinternet.org/∼/media//Files/Reports/2012/PIP Location based
services 2012 Report.pdf

[7] “Gps market forecast to 2015,” 2012, accessed: 11/21/2012.
[Online]. Available: http://www.businesswire.com/news/home/20120725005838/en/
Research-Markets-GPS-Market-Forecast-2015

[8] “Inrix traffic never be late again,” 2012, accessed: 11/21/2012. [Online]. Available:
http://www.inrixtraffic.com/

[9] R. G. Golledge and J. Zhou, “Gps-based tracking of daily activities,” University
of California Transportation Center, Tech. Rep., 2001. [Online]. Available: http:
//EconPapers.repec.org/RePEc:cdl:uctcwp:qt9jb438r2

[10] H. Miller, “Necessary spaceˆ time conditions for human interaction,” Environment and Plan-
ning B: Planning and Design, vol. 32, no. 3, pp. 381–401, 2005.

[11] P. Stopher, P. Bullock, and F. Horst, “Exploring the use of passive gps devices to measure
travel,” in Applications of Advanced Technologies in Transportation (2002), 2002, pp. 959–
967.

[12] P. Stopher and P. Bullock, “Using passive gps as a means to improve spatial travel data: further
findings,” in Conference of Australian Institutes of Transport Research, 23rd, 2001, Clayton,
Victoria, Australia, 2002.

44

http://www.corp.att.com/history/inventing.html
http://www.corp.att.com/history/inventing.html
http://www.corp.att.com/attlabs/reputation/timeline/46mobile.html
http://go.galegroup.com/ps/i.do?id=GALE%7CA14297997&v=2.1&u=tamp44898&it=r&p=ITOF&sw=w
http://go.galegroup.com/ps/i.do?id=GALE%7CA14297997&v=2.1&u=tamp44898&it=r&p=ITOF&sw=w
http://www.itu.int/ITU-D/ict/facts/2011/material/ICTFactsFigures2011.pdf
http://pewinternet.org/~/media//Files/Reports/2011/PIP_Apps-Update-2011.pdf
http://pewinternet.org/~/media//Files/Reports/2012/PIP_Location_based_services_2012_Report.pdf
http://pewinternet.org/~/media//Files/Reports/2012/PIP_Location_based_services_2012_Report.pdf
http://www.businesswire.com/news/home/20120725005838/en/Research-Markets-GPS-Market-Forecast-2015
http://www.businesswire.com/news/home/20120725005838/en/Research-Markets-GPS-Market-Forecast-2015
http://www.inrixtraffic.com/
http://EconPapers.repec.org/RePEc:cdl:uctcwp:qt9jb438r2
http://EconPapers.repec.org/RePEc:cdl:uctcwp:qt9jb438r2

www.manaraa.com

[13] J. Wolf, R. Guensler, S. Washington, and L. Frank, “Use of electronic travel diaries and ve-
hicle instrumentation packages in the year 2000: Atlanta regional household travel survey,”
Transportation Research E-Circular, pp. 413–429, 2001.

[14] G. Draijer, N. Kalfs, and J. Perdok, “Global positioning system as data collection method
for travel research,” Transportation Research Record: Journal of the Transportation Research
Board, vol. 1719, pp. 147–153, 2001.

[15] R. Guensler and J. Wolf, “Development of a handheld electronic travel diary for monitoring
individual tripmaking behavior,” in Transportation Research Board Annual Meeting, 1999.

[16] E. Murakami and D. Wagner, “Can using global positioning system (GPS) improve trip
reporting?” Transportation Research Part C: Emerging Technologies, vol. 7, no. 23,
pp. 149–165, 1999. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0968090X99000170

[17] P. L. Winters, S. J. Barbeau, and N. L. Georggi, “TRAC-IT field testing,” in Smart Phone
Application to Influence Travel Behavior (TRAC-IT Phase 3), 2008, pp. 90–102. [Online].
Available: http://www.nctr.usf.edu/pdf/77709.pdf

[18] E.-H. Chung and A. Shalaby, “A trip reconstruction tool for gps-based personal travel
surveys,” Transportation Planning and Technology, vol. 28, no. 5, pp. 381–401, 2005.
[Online]. Available: http://EconPapers.repec.org/RePEc:taf:transp:v:28:y:2005:i:5:p:381-401

[19] S. Doherty, N. Noël, M. Gosselin, C. Sirois, M. Ueno, and F. Theberge, “Moving beyond
observed outcomes: integrating global positioning systems and interactive computer-based
travel behavior surveys,” 2001.

[20] M. Flamm and V. Kaufmann, “Combining person based GPS tracking and prompted recall
interviews for a comprehensive investigation of travel behaviour adaptation processes during
life course transitions,” in 11th World Conference on Transport Research, 2007.

[21] N. Schuessler and K. W. Axhausen, “Processing raw data from global positioning systems
without additional information,” Transportation Research Record: Journal of the Transporta-
tion Research Board, vol. 2105, pp. 28–36, 2009.

[22] N. Ohmori, M. Nakazato, and N. Harata, “GPS mobile phone-based activity diary survey,” in
Proceedings of the Eastern Asia Society for Transportation Studies, vol. 5, 2005, pp. 1104–
1115.

[23] Y. Asakura, A. Okamoto, A. Suzuki, Y. H. Lee, and J. Tanabe, “Monitoring individual travel
behaviour using PEAMON: a cellular phone based location positioning instrument combined
with acceleration sensor,” in 8th World Congress on Intelligent Transport Systems, 2001.

[24] Y. Asakura and E. Hato, “Tracking survey for individual travel behaviour using mobile
communication instruments,” Transportation Research Part C: Emerging Technologies,
vol. 12, no. 34, pp. 273–291, 2004, intelligent Transport Systems: Emerging
Technologies and Methods in Transportation and Traffic. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0968090X04000130

45

http://www.sciencedirect.com/science/article/pii/S0968090X99000170
http://www.sciencedirect.com/science/article/pii/S0968090X99000170
http://www.nctr.usf.edu/pdf/77709.pdf
http://EconPapers.repec.org/RePEc:taf:transp:v:28:y:2005:i:5:p:381-401
http://www.sciencedirect.com/science/article/pii/S0968090X04000130
http://www.sciencedirect.com/science/article/pii/S0968090X04000130

www.manaraa.com

[25] J. Wolf, S. Hallmark, M. Oliveira, R. Guensler, and W. Sarasua, “Accuracy issues with
route choice data collection by using global positioning system,” Transportation Research
Record: Journal of the Transportation Research Board, vol. 1660, pp. 66–74, 1999. [Online].
Available: http://dx.doi.org/10.3141/1660-09

[26] J. Ogle, R. Guensler, W. Bachman, M. Koutsak, and J. Wolf, “Accuracy of global positioning
system for determining driver performance parameters,” Transportation Research Record:
Journal of the Transportation Research Board, vol. 1818, no. -1, pp. 12–24, 2002. [Online].
Available: http://dx.doi.org/10.3141/1818-03

[27] P. R. Stopher, Q. Jiang, and C. FitzGerald, “Processing gps data from travel surveys,” 2nd
International Colloquium on the Behavioural Foundations of Integrated Land-use and Trans-
portation Models: Frameworks, Models and Applications, Toronto, 2005.

[28] R. N. Mayo and P. Ranganathan, “Energy consumption in mobile devices: why
future systems need requirements-aware energy scale-down,” in Proceedings of the
Third International Conference on Power - Aware Computer Systems, ser. PACS’03.
Berlin, Heidelberg: Springer-Verlag, 2004, pp. 26–40. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-540-28641-7 3

[29] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “Energy consumption
in mobile phones: a measurement study and implications for network applications,” in
Proceedings of the 9th ACM SIGCOMM Conference on Internet measurement conference,
ser. IMC ’09. New York, NY, USA: ACM, 2009, pp. 280–293. [Online]. Available:
http://doi.acm.org/10.1145/1644893.1644927

[30] D. P. Aguilar, “A framework for evaluating the computational aspects of mobile
phones,” Ph.D. dissertation, Tampa, FL, USA, 2008. [Online]. Available: http:
//scholarcommons.usf.edu/etd/111

[31] A. Leonhardi, C. Nicu, and K. Rothermel, “A map-based dead-reckoning protocol for
updating location information,” in Proceedings of the 16th International Parallel and
Distributed Processing Symposium, ser. IPDPS ’02. Washington, DC, USA: IEEE Computer
Society, 2002, pp. 15–. [Online]. Available: http://dl.acm.org/citation.cfm?id=645610.662039

[32] O. Wolfson, A. P. Sistla, S. Chamberlain, and Y. Yesha, “Updating and querying databases
that track mobile units,” Distrib. Parallel Databases, vol. 7, no. 3, pp. 257–387, July 1999.
[Online]. Available: http://dx.doi.org/10.1023/A:1008782710752

[33] G. Treu, A. Küpper, and T. Wilder, “Extending the lbs-framework trax: Efficient proximity
detection with dead reckoning,” Comput. Commun., vol. 31, no. 5, pp. 1040–1051, Mar. 2008.
[Online]. Available: http://dx.doi.org/10.1016/j.comcom.2007.12.013

[34] S. Barbeau, M. Labrador, N. Georggi, P. Winters, and R. Perez, “TRAC-IT: A software archi-
tecture supporting simultaneous travel behavior data collection and real-time location-based
services for gps-enabled mobile phones,” in Transportation Research Board 88th Annual
Meeting, no. 09-3175, 2009.

46

http://dx.doi.org/10.3141/1660-09
http://dx.doi.org/10.3141/1818-03
http://dx.doi.org/10.1007/978-3-540-28641-7_3
http://dx.doi.org/10.1007/978-3-540-28641-7_3
http://doi.acm.org/10.1145/1644893.1644927
http://scholarcommons.usf.edu/etd/111
http://scholarcommons.usf.edu/etd/111
http://dl.acm.org/citation.cfm?id=645610.662039
http://dx.doi.org/10.1023/A:1008782710752
http://dx.doi.org/10.1016/j.comcom.2007.12.013

www.manaraa.com

[35] S. Barbeau, R. Perez, M. Labrador, A. Perez, P. Winters, and N. Georggi, “A location-aware
framework for intelligent real-time mobile applications,” Pervasive Computing, IEEE, vol. 10,
no. 3, pp. 58–67, Jul-Sep 2011.

[36] S. Barbeau, M. Labrador, A. Perez, P. Winters, N. Georggi, D. Aguilar, and R. Perez, “Dy-
namic management of real-time location data on gps-enabled mobile phones,” in Mobile Ubiq-
uitous Computing, Systems, Services and Technologies, 2008. UBICOMM ’08. The Second
International Conference on, Oct 2008, pp. 343 –348.

[37] S. Barbeau, “A location-aware architecture supporting intelligent real-time mobile
applications,” Ph.D. dissertation, Tampa, FL, USA, 2012. [Online]. Available: http:
//scholarcommons.usf.edu/etd/3968

[38] S. Barbeau, P. Winters, R. Perez, M. Labrador, and N. Georggi, “Optimizing performance
of location-aware applications using state machines,” Patent US 8 036 679, Oct 11, 2011.
[Online]. Available: http://www.google.com/patents/US8036679

[39] S. Barbeau, P. Winters, R. Perez, M. Labrador, and N. Georggi, “Method for determining
critical points in location data generated by location-based applications,” Patent US 8 249 807,
Aug 21, 2012. [Online]. Available: http://www.google.com/patents/US8249807

[40] M. Ester, H. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering clusters
in large spatial databases with noise,” in Proceedings of the 2nd International Conference on
Knowledge Discovery and Data Mining, vol. 1996. AAAI Press, 1996, pp. 226–231.

[41] D. Birant and A. Kut, “ST-DBSCAN: An algorithm for clustering spatial-temporal
data,” Data Knowl. Eng., vol. 60, no. 1, pp. 208–221, Jan. 2007. [Online]. Available:
http://dx.doi.org/10.1016/j.datak.2006.01.013

[42] A. T. Palma, V. Bogorny, B. Kuijpers, and L. O. Alvares, “A clustering-based approach for
discovering interesting places in trajectories,” in Proceedings of the 2008 ACM Symposium
on Applied computing, ser. SAC ’08. New York, NY, USA: ACM, 2008, pp. 863–868.
[Online]. Available: http://doi.acm.org/10.1145/1363686.1363886

[43] Q. Li, Y. Zheng, X. Xie, Y. Chen, W. Liu, and W.-Y. Ma, “Mining user similarity based on
location history,” in Proceedings of the 16th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, ser. GIS ’08. New York, NY, USA: ACM,
2008, pp. 34:1–34:10. [Online]. Available: http://doi.acm.org/10.1145/1463434.1463477

[44] N. Persad-Maharaj and S. Barbeau, “Fast clustering of global navigation satellite
system data and trip segmentation,” in Dynamic Travel Information Personalized
and Delivered to Your Cell Phone, 2011, pp. 155–190. [Online]. Available: http:
//www.nctr.usf.edu/wp-content/uploads/2011/03/77804.pdf

[45] L. O. Alvares, V. Bogorny, B. Kuijpers, J. A. F. de Macedo, B. Moelans, and A. Vaisman,
“A model for enriching trajectories with semantic geographical information,” in Proceedings
of the 15th Annual ACM International Symposium on Advances in Geographic Information
Systems, ser. GIS ’07. New York, NY, USA: ACM, 2007, pp. 22:1–22:8. [Online]. Available:
http://doi.acm.org/10.1145/1341012.1341041

47

http://scholarcommons.usf.edu/etd/3968
http://scholarcommons.usf.edu/etd/3968
http://www.google.com/patents/US8036679
http://www.google.com/patents/US8249807
http://dx.doi.org/10.1016/j.datak.2006.01.013
http://doi.acm.org/10.1145/1363686.1363886
http://doi.acm.org/10.1145/1463434.1463477
http://www.nctr.usf.edu/wp-content/uploads/2011/03/77804.pdf
http://www.nctr.usf.edu/wp-content/uploads/2011/03/77804.pdf
http://doi.acm.org/10.1145/1341012.1341041

www.manaraa.com

[46] D. Ashbrook and T. Starner, “Using GPS to learn significant locations and predict movement
across multiple users,” Personal and Ubiquitous Computing, vol. 7, no. 5, pp. 275–286, Oct.
2003. [Online]. Available: http://dx.doi.org/10.1007/s00779-003-0240-0

[47] S. Bricka and C. R. Bhat, “Comparative analysis of global positioning system-
based and travel survey-based data,” Transportation Research Record: Journal of
the Transportation Research Board, vol. 1972, pp. 9–20, 2006. [Online]. Available:
http://trb.metapress.com/content/x6643h3856243663/

[48] J. Wolf, S. SchöUnfelder, U. Samaga, M. Oliveira, and K. Axhausen, “Eighty weeks of
global positioning system traces: approaches to enriching trip information,” Transportation
Research Record: Journal of the Transportation Research Board, vol. 1870, pp. 46–54, 2004.
[Online]. Available: http://trb.metapress.com/content/4h45701736m78053/

48

http://dx.doi.org/10.1007/s00779-003-0240-0
http://trb.metapress.com/content/x6643h3856243663/
http://trb.metapress.com/content/4h45701736m78053/

www.manaraa.com

APPENDICES

49

www.manaraa.com

50

Appendix A: Additional Tables

Table A.1: Results of Algorithm Evaluation on Full Datasets with GPS Auto-Sleep Module

Test Mode of Transportation ASTIPI CB-SMoT SPD FC

TP FP FN
Acc
(%)

TP FP FN
Acc
(%)

TP FP FN
Acc
(%)

TP FP FN
Acc
(%)

1 Stationary 1 0 0 100 1 0 0 100 0 1 1 0 1 0 0 100
2 Stationary 1 0 0 100 1 0 0 100 0 1 1 0 1 0 0 100
3 Walk 3 0 2 60 3 1 2 50 2 1 3 33 4 5 1 40
4 Walk 4 0 1 80 1 1 4 17 4 1 1 67 2 4 3 22
5 Walk 4 1 1 67 3 1 2 50 3 3 2 38 3 1 2 50
6 Walk & Bus 2 0 1 67 1 1 2 25 2 1 1 50 2 5 1 25
7 Walk & Bus 3 2 4 33 1 2 6 11 3 3 4 30 6 12 1 32
8 Walk & Bus 4 0 0 100 2 2 2 33 4 0 0 100 4 46 0 8
9 Walk & Bus & Drive 6 0 0 100 1 2 5 13 5 2 1 63 6 14 0 30
10 Walk & Drive 4 0 0 100 3 3 1 43 3 0 1 75 3 28 1 9
11 Walk & Drive 3 0 0 100 1 1 2 25 2 0 1 67 2 146 1 1
12 Walk & Drive 4 0 1 80 1 2 4 14 5 0 0 100 5 96 0 5
13 Walk & Drive 6 1 0 86 2 2 4 25 5 1 1 71 6 46 0 12
14 Walk & Drive 5 0 1 83 2 5 4 18 5 1 1 71 6 95 0 6
15 Walk & Drive 4 0 0 100 2 5 2 22 3 0 1 75 3 192 1 2
16 Walk & Drive 5 0 0 100 2 1 3 33 4 1 1 67 5 114 0 4
17 Walk & Drive 3 0 0 100 0 1 3 0 3 2 0 60 3 150 0 2
18 Walk & Drive 7 1 0 88 1 5 6 8 6 2 1 67 7 118 0 6
19 Walk & Drive 6 0 1 86 1 6 6 8 5 1 2 63 7 163 0 4
20 Walk & Drive 6 0 0 100 4 8 2 29 6 1 0 86 6 130 0 4
21 Walk & Drive 12 1 0 92 3 4 9 19 12 1 0 92 12 190 0 6
22 Walk & Drive 6 0 0 100 3 2 3 38 6 2 0 75 6 92 0 6
23 Walk & Drive 9 0 2 82 3 4 8 20 9 1 2 75 9 288 2 3
24 Drive 5 1 0 83 3 56 2 5 4 1 1 67 5 335 0 1
25 Drive 5 0 0 100 2 3 3 25 4 0 1 80 5 182 0 3
26 Drive 8 0 0 100 8 88 0 8 8 0 0 100 8 142 0 5
27 Drive 10 0 1 91 3 3 8 21 9 0 2 82 10 278 1 3

Average Accuracy 88% 28% 65% 18%
Percent of Accuracy > 75% 85% 7% 26% 7%

www.manaraa.com

51

Appendix A (Continued)

Table A.2: Results of Algorithm Evaluation on Reduced Datasets with GPS Auto-Sleep Module and Critical Points Algorithm

Test Mode of Transportation ASTIPI CB-SMoT SPD FC

TP FP FN
Acc
(%)

TP FP FN
Acc
(%)

TP FP FN
Acc
(%)

TP FP FN
Acc
(%)

1 Stationary 1 0 0 100 1 0 0 100 0 0 1 0 1 0 0 100
2 Stationary 1 1 0 50 1 0 0 100 0 0 1 0 1 0 0 100
3 Walk 1 0 4 20 1 0 4 20 1 1 4 17 4 5 4 17
4 Walk 3 1 2 50 2 1 3 33 2 3 3 25 2 4 3 29
5 Walk 2 1 3 33 1 0 4 20 3 1 2 50 3 1 3 40
6 Walk & Bus 2 1 1 50 2 1 1 50 1 2 2 20 2 5 1 25
7 Walk & Bus 2 0 5 29 3 5 4 25 3 1 4 38 6 12 4 18
8 Walk & Bus 2 4 2 25 1 3 3 14 3 4 1 38 4 46 1 23
9 Walk & Bus & Drive 5 1 1 71 3 1 3 43 5 2 1 63 6 14 1 31
10 Walk & Drive 3 1 1 60 2 2 2 33 2 2 1 40 3 28 1 27
11 Walk & Drive 2 1 1 50 2 1 1 50 2 2 1 40 2 146 1 29
12 Walk & Drive 2 1 3 33 1 2 4 14 3 2 2 43 5 96 3 29
13 Walk & Drive 5 3 1 56 1 1 5 14 5 4 1 50 6 46 3 25
14 Walk & Drive 3 1 3 43 2 3 4 22 4 2 2 50 6 95 2 36
15 Walk & Drive 3 2 1 50 2 1 2 40 3 3 1 43 3 192 1 25
16 Walk & Drive 4 4 1 44 3 6 2 27 3 6 2 27 5 114 2 15
17 Walk & Drive 2 2 1 40 2 1 1 50 2 2 1 40 3 150 0 25
18 Walk & Drive 5 4 2 45 2 6 5 15 5 4 2 45 7 118 4 21
19 Walk & Drive 6 4 1 55 3 4 4 27 5 4 2 45 7 163 3 33
20 Walk & Drive 5 7 1 38 4 8 2 29 5 7 1 38 6 130 2 19
21 Walk & Drive 10 2 2 71 8 1 4 62 9 5 3 53 12 190 2 56
22 Walk & Drive 4 3 2 44 4 9 2 27 3 7 3 23 6 92 3 17
23 Walk & Drive 6 11 5 27 5 7 6 28 6 13 5 25 9 288 6 16
24 Drive 4 6 1 36 5 14 0 26 5 6 0 45 5 335 1 10
25 Drive 3 3 2 38 1 3 4 13 3 3 2 38 5 182 2 43
26 Drive 5 9 3 29 5 4 3 42 5 8 3 31 8 142 2 21
27 Drive 6 8 5 32 5 18 6 17 6 9 5 30 10 278 5 11

Average Accuracy 45% 35% 31% 31%
Percent of Accuracy > 55% 19% 11% 4% 11%

www.manaraa.com

52

Appendix A (Continued)
Table A.3: Results of ASTIPI-With-Speed Algorithm Evaluation

Test Mode of Transportation
On Full Dataset with GPS

Auto-Sleep Module

On Reduced Dataset with GPS
Auto-Sleep Module and Critical Points

Algorithm Strategy

TP FP FN
Acc
(%)

TP FP FN
Acc
(%)

1 Stationary 1 0 0 100 1 0 0 100
2 Stationary 1 0 0 100 1 0 0 100
3 Walk 3 0 2 60 1 0 4 20
4 Walk 4 0 1 80 3 1 2 50
5 Walk 4 1 1 67 2 1 3 33
6 Walk & Bus 2 0 1 67 2 1 1 50
7 Walk & Bus 3 2 4 33 2 0 5 29
8 Walk & Bus 4 0 0 100 2 2 2 33
9 Walk & Bus & Drive 6 0 0 100 5 1 1 71

10 Walk & Drive 4 0 0 100 3 0 1 75
11 Walk & Drive 3 0 0 100 2 0 1 67
12 Walk & Drive 4 0 1 80 2 0 3 40
13 Walk & Drive 6 1 0 86 5 1 1 71
14 Walk & Drive 5 0 1 83 3 1 3 43
15 Walk & Drive 3 0 1 75 3 0 1 75
16 Walk & Drive 5 0 0 100 4 1 1 67
17 Walk & Drive 3 0 0 100 2 1 1 50
18 Walk & Drive 7 1 0 88 4 1 3 50
19 Walk & Drive 6 0 1 86 4 2 3 44
20 Walk & Drive 6 0 0 100 6 0 0 100
21 Walk & Drive 12 1 0 92 9 1 3 69
22 Walk & Drive 6 0 0 100 4 1 2 57
23 Walk & Drive 9 0 2 82 7 2 4 54
24 Drive 5 1 0 83 4 0 1 80
25 Drive 5 0 0 100 3 0 2 60
26 Drive 8 0 0 100 6 1 2 67
27 Drive 10 0 1 91 6 1 5 50

Average Accuracy 87% Average Accuracy 59%
Percent of Accuracy > 75% 81% Percent of Accuracy > 55% 52%

www.manaraa.com

53

Appendix A (Continued)

Table A.4: Results of Algorithm Average Running Time for Twenty Runs of each Test

Test Mode of Transportation Size (Points) ASTIPI (ms) CB-SMoT
(ms) SPD (ms) FC (ms)

1 Stationary 75 0.05 0.75 0.05 0.70
2 Stationary 79 0.05 0.75 0.05 0.90
3 Walk 76 0.90 1.60 0.05 1.90
4 Walk 332 2.15 15.20 0.25 16.70
5 Walk 122 0.10 2.25 0.05 3.05
6 Walk & Bus 430 1.55 21.95 0.10 21.60
7 Walk & Bus 615 2.00 44.10 0.20 44.70
8 Walk & Bus 1489 5.00 258.70 0.40 263.55
9 Walk & Bus & Drive 1000 2.35 113.90 0.15 119.65
10 Walk & Drive 730 2.55 63.50 0.35 77.70
11 Walk & Drive 791 1.40 73.10 0.20 77.90
12 Walk & Drive 988 1.60 114.20 0.30 117.45
13 Walk & Drive 1086 1.70 136.40 0.25 140.90
14 Walk & Drive 1137 2.05 151.00 0.25 155.30
15 Walk & Drive 1186 2.05 162.90 0.35 168.65
16 Walk & Drive 1201 2.30 166.90 0.30 177.70
17 Walk & Drive 1222 2.25 171.95 0.35 179.20
18 Walk & Drive 1372 2.60 217.35 0.35 230.05
19 Walk & Drive 1848 3.80 409.80 0.50 418.90
20 Walk & Drive 1898 3.25 429.95 0.55 443.80
21 Walk & Drive 1964 3.40 450.00 0.50 471.35
22 Walk & Drive 2492 4.40 726.85 0.70 738.25
23 Walk & Drive 3122 6.40 1119.85 0.85 1154.65
24 Drive 2625 4.45 830.90 0.60 817.40
25 Drive 1199 1.75 167.25 0.25 174.05
26 Drive 3498 5.75 1508.35 0.95 1411.10
27 Drive 4331 7.55 2297.60 1.05 2195.05

Average Running Time 2.72 357.67 0.37 356.38

www.manaraa.com

Appendix B: Reprint Permissions for Use of Figure 2.2 and Figure 2.3

54

	University of South Florida
	Scholar Commons
	January 2013

	Automatic Identification of Points of Interest in Global Navigation Satellite System Data: A Spatial Temporal Approach
	Khoa Anh Tran
	Scholar Commons Citation

	ASTIPI - TITLE PAGE
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	CHAPTER 1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Contributions
	1.4 Structure of Thesis

	CHAPTER 2 Background And Literature Review
	2.1 Background
	2.1.1 GPS Auto-Sleep
	2.1.2 Critical Points Algorithm

	2.2 Related Works
	2.2.1 Density-Based Spatial Clustering of Applications with Noise and Its Spatial Temporal Variation
	2.2.2 Clustering-Based Stops and Moves of Trajectories
	2.2.3 Stay Point Detection
	2.2.4 Fast Clustering of Global Navigation Satellite System Data

	CHAPTER 3 ASTIPI - The Automatic Spatial Temporal Identification of Points of Interest Algorithm
	3.1 Definitions
	3.1.1 Trajectory Sample
	3.1.2 Eps-K-Neighborhood of a Point
	3.1.3 Core Point
	3.1.4 Directly Density-Reachable
	3.1.5 Density-Reachable
	3.1.6 Density-Connected
	3.1.7 Point of Interest

	3.2 Algorithm
	3.2.1 Eps-K-Neighborhood
	3.2.2 ASTIPI
	3.2.3 Sample Execution

	CHAPTER 4 Evaluation
	4.1 Experimental Design
	4.2 Performance on Dataset with GPS Auto-Sleep Module
	4.3 Performance on Dataset with GPS Auto-Sleep Module and Critical Points Algorithm
	4.4 Running Time

	CHAPTER 5 Summary
	5.1 Summary of Contributions
	5.2 Future Work

	REFERENCES
	APPENDICES
	Appendix A - Additional Tables
	Appendix B - Reprint Permissions for Use of Figure 2.2 and Figure 2.3

